Using Human Knowledge Awareness for Human Robot collaboration

Grégoire Milliez, Raphaël Lallement, Michelangelo Fiore, Rachid Alami, LAAS-CNRS Toulouse, France

Introduction

Statement: reasonning on other's mental state is a key feature for Joint Action!

Does the chimpanzee have a theory of mind? (Premack 1978) Does the autistic child have a 'theory of mind'? (Baron Cohen 1985)

<u>Issue:</u> how to **model** and **properly use awareness** of the **human knowledge** on how to perform a task?

e.g.: We want to bake a pie. Does the human know how to prepare the dough? How to represent this knowledge? How to use it?

Motivation: efficient and socialy adapted human-robot collaboration

06/04/2016

- 1. Human Knowledge Representation
- 2. Human Adaptive HTN Planner
- 3. Shared Plan Presentation and Negotiation
- 4. Adaptive Plan Execution

- 1. Human Knowledge Representation
- 2. Human Adaptive HTN Planner
- 3. Shared Plan Presentation and Negotiation
- 4. Adaptive Plan Execution

Human Knowledge Tracking

Knowledge tracking from situation assessment, using TOASTER

TOASTER: An Open-Source Situation Assessment Framework for HRI (RO-MAN 2016, *in review*)

https://github.com/Greg8978/toaster

06/04/2016

Human Knowledge Tracking Human Knowledge Modeling

In this work, we focus on the human's **knowledge on how to perform tasks**. This knowledge is represented as a vector

<HUMAN, TASK, PARAMETERS, VALUE>

e.g.: human1 has an expert knowledge on assembling a furniture piece A with a piece B:

<human1, assemble, [A,B], EXPERT>

HUMAN: human having this knowledge TASK: name of the task PARAMETERS: list of relevant parameters to describe the task knowledge VALUE: value (or level) of knowledge

Human Knowledge Tracking Human Knowledge Modeling

Knowledge Levels

- 1 NEW: human has no knowledge on how to perform the task
- 2 BEGINNER: human may know how to perform the task
- 3 INTERMEDIATE: human knows how to perform the task
- 4 EXPERT: human knows how to perform the task and is able to teach it

- 1. Human Knowledge Representation
- 2. Human Adaptive HTN Planner
- 3. Shared Plan Presentation and Negotiation
- 4. Adaptive Plan Execution

Human Adaptive HTN Planner

Hierarchical planner for better context

HATP: Hierarchical Agent-based Task Planner:

=> **Agents based:** computes multi-agent plans with humans and robots acting.

=> **Cost driven**: the best plan is found sooner (using plan pruning).

=> **Social rules**: refines the plans according to a set of rules designed to promote more socially acceptable plans (e.g. effort balancing depending on human preferences and context, social conventions).

as-rnf

Human Adaptive HTN Planner

- 1. Human Knowledge Representation
- 2. Human Adaptive HTN Planner
- 3. Shared Plan Presentation and Negotiation
- 4. Adaptive Plan Execution

Shared Plan Presentation and Negotiation

Plan presentation

Shared Plan Presentation and Negotiation

Plan negotiation

- 1. Human Knowledge Representation
- 2. Human Adaptive HTN Planner
- 3. Shared Plan Presentation and Negotiation
- 4. Adaptive Plan Execution

Adaptive Plan Execution

beginner <human1, PrepareDough, [], BEGINNER>

expert <human1, PrepareDough, [], EXPERT>

1:	for n:=nodes.start to n:=nodes.end do
2:	if $agents(n) = \{robot\}$ then
3:	if $children(n) \neq \emptyset \land user_kn(n) = NEW$
	\land teachPolicy then
4:	$execute_tree(children(n))$
5:	$user_kn(n) := BEGINNER$
6:	else
7:	execute(n)
8:	end if
9:	else if $user_kn(n) = NEW$ then
10:	explain(n)
11:	if $children(n) \neq \emptyset$ then
12:	$execute_tree(children(n))$
13:	$user_kn(n) := BEGINNER$
14:	else
15:	monitor(n)
16:	end if
17:	else if $user_kn(n) = BEGINNER$ then
18:	if $propose_explain(n)$ then
19:	$user_kn(n) := NEW$
20:	() ▷ Same process as NEW
21:	else
22:	monitor(n)
23:	end if
24:	else if $user_kn(n) = INTERMEDIATE$
	\vee user_kn(n) = EXPERT then
25:	monitor(n)
26:	end if
27:	end for

Conclusion

- \Rightarrow How to assess and represent human knowledge on tasks
- ⇒ Use human knowledge awareness for plan generation, explanation and monitoring
- \Rightarrow 1st user study to show the improvement from our system

- \Rightarrow User study in real
- \Rightarrow Negotiating the decomposition? / teach the robot

Thank you!

Questions?

